正比例函数教学过程
如今信息化社会里,通常我们会接触到写正比例函数教学过程文案写作需求,对于《正比例函数教学过程》不熟悉、不懂如何下手的朋友,不妨一起来参考本篇《正比例函数教学过程》是怎么写的吧。
正比例函数教学过程 篇1
教学目标与要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、交流,归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
教学重点:对二次函数概念的理解。
教学难点:由实际问题确定函数解析式
教学过程:
1、 问题感知,情境切入.
教师展示实际问题:
“第18届世界杯足球赛”是今年夏天最“热”的一个话题,绿荫场上运动员挥汗如雨,绿荫场外教练员运筹帷幄.足球运动是一项对运动员状态(包括体能、速度和技术意识)要求很高的项目,一般情况下,足球运动员的状态会随着时间的变化而变化:比赛开始后,球员慢慢进入状态,中间有一段时间球员保持较为理想的状态,随后球员的状态慢慢下降.经实验分析可知:球员的状态综合指数y随时间t的变化规律有如下关系:
(1)比赛开始后第10分钟时与比赛开始后第50分钟时比较,什么时间球员的状态更好?
(2)比赛开始后多少分钟时,球员的状态最好,这样的最好状态能持续多少分钟?
通过学生之间的讨论,很容易得出第(1)问的答案:比赛开始后第10分钟时,y = 140;比赛开始后第50分钟时,y = 220;所以,比赛开始后第50分钟时球员的状态更好.
当学生开始进行第(2)问的`解答时,遇到了不同的困难:
(1)不知道如何讨论当50 t 90时,y的变化范围?
(2)通过模仿一次函数的性质,学生求出了函数y = 中,y的变化范围是 .却无法说出这样做的数学依据是什么?
所有的困难都指向一个焦点问题:
y = 是个什么样的函数?它具有什么样的独特性质?
因此,学生产生了研究函数y = 的兴趣,教师趁势提出今天的学习内容.
以“世界杯足球赛”这样贴近学生生活实际的问题为背景,力求更好地激发学生的求知欲,使之成为主动、积极的探索者,并在解决实际问题的过程中体验成功的快乐,同时为新课的引出和学习奠定了基础.这是一道结合实际的自编题,其中的数据来源于自己做的社会调查.足球运动是一项集体运动项目,对运动员的配合意识要求很高,所以运动员上场后30分钟左右才进入最佳状态,中场休息后状态仍能保持到最佳,50分钟后由于体能的下降影响了状态的发挥.
2、讲解新课,提炼知识.
(1)对比、分析
教师举出生活中的其它实例,感受二次函数的意义,进一步深化对二次函数概念的认识.
① 如图,正方形中圆的半径是4cm,阴影部分的面积Q(cm2)和正方形的边长a(cm)的函数关系式是____________________.
② 某种药品现价每盒26元,计划两年内每年的降价率都为p,那么,两年后这种药品每盒的价格M(元)和年降价率p的函数关系式是____________________.
答案:M = 26(1- p)2
(2)类比、迁移
教师顺势提问:对y = 、Q = a2 - 16 、M = 26(1- p)2这三个函数你能用一个一般形式来表示吗?
教师参与到学生的分组讨论中去,合作交流,注意及时抓住学生智慧火花的闪现进行引导.教师鼓励学生用不同字母表示,只要把握概念的实质即可,必要时可提示学生,类比一次函数的知识.
(3)二次函数的认识
一般地,我们把形如y = ax2 + bx + c(a≠0)(说明:括号内的条件,在第(4)步之后再补写)的函数叫做二次函数,其中a、b分别是二次项系数、一次项系数,c是常数项.
(4)加深理解
二次函数的定义给出后,教师引导学生分别讨论“a、b、c的取值范围”.学生就问题自由发言,教师充分引导学生发表自己的看法,只要合理,都应肯定.最后师生达到共识:
① a不能为0,因为当a=0时,右边不再是x的二次式;
② b、c都能为0,因为当b=0 、c=0或b、c都为0时,右边仍是x的二次式.
教师对所得出的常量范围,进行概念补写.
通过两个实例的分析,让学生通过自己列解析式,来思考所列解析式的结构特征,为概括二次函数的定义打下基础.
引导学生侧重从解析式的特征思考,透过“引用不同字母” 的表层现象,看到解析式的“结构一致”的本质.敞开思想,广泛议论,实现对二次函数本质的认识.充分肯定学生的探究结果,使其树立“我也能发现数学”的信心.教师的提问意在引起学生的思维冲突,使之产生探究的欲望.遵循学生认知发展及知识系统的形成过程,由一般到特殊逐步为概念的理解铺平道路.
3、分层实践,能力升级.
(1)[快速抢答]下面各函数中,哪些是二次函数?
① y = 2x2 ② y = - x2 + 3
③ y = (x≠0) ④ y = 15x -1
⑤ y = (x + 1)2 +2 ⑥ y = 3x2-2x-5
⑦ y = -x(x2 + 4) ⑧ y =
答:①、②、⑤、⑥是二次函数
(2)[请你帮个忙]:某果园有100棵橘子树,每一棵树平均结600个橘子.现准备多种一些橘子树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.那么,如何表示增种的橘子树的数量x(棵)与橘子总产量y(个)之间的函数关系式呢?判断这个函数的类型,如果是二次函数,写出解析式中的a、b、c.
答案:
解析式中的a = - 5,b = 100,c = 60000.
兴趣是学习的动力源泉,学生在参与编题的过程中,培养了与人合作的精神和创新意识,通过学生多层次、多角度地解决问题的方式,使原本枯燥的数学课堂逐渐被开放、热烈,富于创造性的课堂气氛所代替,成为激发学生潜力的最佳土壤.
4、展示交流,总结新知.
(1)学生自己总结,并在班上交流
(2)结合学生所述,教师给予指导
① 正确理解“二次函数”定义,关注和定义有关的注意问题.
② 生活中处处有数学的影子,只要留心观察身边的事物,开动脑筋,就能用数学知识解决许多的生活实际问题.
课堂小结以教师提问、学生自由讨论的形式进行,借此促进师生心灵的交流,学生对自己清醒的认识和总结,必然促进其自主学习,获得可持续发展的动力.
5、布置作业、巩固知识.
(1)阅读教材相应内容,完成课后习题第45--46页第1、2题.
(2)实践题:推测植物的生长与温度的关系
以上为正比例函数教学过程 篇1范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇2
教学目标设计
知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求
1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力, 学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求
1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程
导学提纲
设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富 ,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受 ,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
(一)前情回顾:
1.复习二次函数y=ax2+bx+c(a≠0)的图象、顶点坐标、对称轴和最值
2.(1)求函数y=x2+ 2x-3的最值。
(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)
3、抛物线在什么位置取最值?
(二)适当点拨,自主探究
1.在创设情境中发现问题
:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?
2、在解决问题中找出方法
:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?
(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题, 目的在于让学生体会其应用价值——我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理 论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)
3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
解:设垂直于墙的边AD=x米,则AB=(32-2x) 米,设矩形面积为y米2,得到:
Y=x(32-2x)= -2x2+32x
[错解]由顶点公式得:
x=8米时,y最大=128米2
而实际上定义域为11≤x ﹤16,由图象或增减性可知x=11米时, y最大=110米2
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错 解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与 形的\'完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
(三)总结交流:
(1) 同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.
引导学生分析解题循环图:
(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?
(四)掌握应用:图中窗户边框的 上半部分是由四个全等扇形组成的半圆,下部分是矩形。如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。)
(五)我来试一试:
如图在Rt△ABC中,点P在斜边AB上移动,PM⊥BC,PN⊥AC,M,N分别为垂足,已知AC=1,AB=2,求:
(1)何时矩形PMCN的面积最大,把最大面积是多少?
(2)当AM平分∠CAB时,矩形PMCN的面积.
(六)智力闯关:
如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最 大面积是多少?
作业:课本随堂练习 、习题1,2,3
板书设计
二次函数的应用——面积最大问题
课后反思
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握 求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。
教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐 和成就感。在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。同时也注重对解题方法与解题 模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。
就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。
以上为正比例函数教学过程 篇2范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇3
一、教材分析
(一)内容说明
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排
4.8节教材安排为4课时,我计划用5课时
(三)目标和重、难点
1.教学目标
教学目标的确定,考虑了以下几点:
(1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;
(2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2. 重、难点
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;
其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性
二、教法分析
(一)教法说明 教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的.知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二) 教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。 因此
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
四、教学程序
指导思想是:两条线索、三大特点、四个环节
(一)导入
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索 主要环节,分为两个部分
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质
1.定义域、值域 2.周期性
3.单调性 (重难点内容)
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
** 教师结合图象帮助学生理解并强调 “距离”(“长度”)是周期的多少倍
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生
设计意图:
(1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;
(2)通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习
补充和选作题体现了课堂要求的差异性。
(四)结课
五、板书说明 既要体现原则性又要考虑灵活性
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)
六、效果及评价说明
(一)知识诊断
(二)评价说明
1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。
2. 根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。
3. 本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。
通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。
以上为正比例函数教学过程 篇3范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇4
一、教学目标
1.认识正比例函数形式
2.画正比例函数图像
二、教学重难点及教学设计
重点:正比例函数的性质、特征
难点:画出正比例函数图像
教学设计:
1. 从生活中的事例入手引入新课
2. 热炒热卖,即时巩固练习
3. 引导学生自己归纳总结得到正比例函数的知识
三、教具准备
多媒体课件、辅助小黑板、三角板一块
四、教学过程
引导:回顾旧知识,引入新知识。问题:据了解目前市场的鱼是8元/斤 ,顾客买鱼所付的价钱y(单位:元)与买鱼的重量x(单位:斤)变化而变化。请同学们列出函数关系式:
得出函数式:y8x
探索研究:
下列问题中的变量对应规律可用怎样的函数表示?
(1)圆的周长l随半径r的`大小变化而变化;l
(2)铁的密度为7.8g
32r /cm,铁块的质量m(单位:g)随它的体积V(单3位:cm)的大小变化而变化;m7.8V
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;h0.5n
(4)冷冻一个00c的物体,使它每分下降2c,物体的温度T(单位:c)00随冷冻时间t (单位:分)的变化而变化。T
同学们观察一下这些函数有什么共同点? 2t
通过观察正如之前我们一起解决的实际问题时列出的函数
刚才所列出的函数都是常数与自变量的乘积的形式。 y8x一样,
l2r
m7.8V
h0.5n
T2t
y8x
观察一下其中2,7.8,0.5,2,8都是常量,我们统一用k来表示,r,V,n,t,x都是变量,我们用x来表示,函数l,m,h,T,y统一由y表示。则以上式子我们不难给它找到一个通式
组织练习巩固知识点。
研究正比例函数图像:下面我们一起来看一个相对简单的函数式ykx(其中k为常数,k0)。 y2x 请同学们用列图表描点画图像的步骤,先在草稿本上画出图表,然后同学们自己画出该函数的图像。总结归纳出一些函数性质。
同学们再用相同的方法快速做出y比较一下两函数之间有2x的函数图像,
什么异同之处。
通过学习,我们知道了些什么呢,我们来梳理一下我们今天所学习的内容。 首先,我们会根据问题列出一些形如ykx的函数关系式。
0时,y随x我们还研究了它的一些特性。知道图像过原点(0,0)。当k
的增大而增大,当k0时,y随x的增大而减少。
总结本堂课所学重点。
下来同学们再去生活中采集一些关于正比例函数的应用,后面的内容我们下节课接着讲,今天的作业是习题14.2-1、2、4(1)
下课
以上为正比例函数教学过程 篇4范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇5
一.教学目标
1.知识与技能
(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法
(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。
3.情感、态度、价值观
(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
二.教学重点与难点
教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。
教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。
三.教学方法与教学手段
问题教学法、合作学习法,结合多媒体课件
四.教学过程
角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。
(一)问题提出
如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。
【问题1】求390°角的正弦、余弦值.
一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°) = sinα,
cos(a+k·360°) = cosα, (k∈Z)
tan(a+k·360°) = tanα。
这组公式用弧度制可以表示成sin(a+2kπ) = sinα,
cos(a+2kπ) = cosα, (k∈Z) (公式一)
tan(a+2kπ) = tanα。
(二)尝试推导
如何利用对称推导出角π-a与角a的三角函数之间的关系。
由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:
【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?
角π-a与角a的终边关于y轴对称,有
sin(π-a) = sina,
cos(π-a) =-cosa,(公式二)
tan(π-a) =-tana。
〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?
因为与角a终边关于y轴对称是角π-a,,利用这种对称关系,得到它们的`终边与单位圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。
(三)自主探究
如何利用对称推导出π+a,-a与a的三角函数值之间的关系。
刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?
【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?
角-a与角a的终边关于x轴对称,有:
sin(-a) =-sina,
cos(-a) = cosa,(公式三)
tan(-a) =-tana。
角π+a与角a终边关于原点O对称,有:
sin(π +a) =-sina,
cos(π +a) =-cosa,(公式四)
tan(π +a) = tana。
上面的公式一~四都称为三角函数的诱导公式。
(四)简单应用
例求下列各三角函数值:
(1) sinp; (2) cos(-60°);(3)tan(-855°)
(五)回顾反思
【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?
知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:
(六)分层作业
1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;
2、必做题 课本23页13
3、选做题
(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?
(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?
以上为正比例函数教学过程 篇5范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇6
的计算公式。教学难点:对圆周率的认识。
教学过程:
一、体会周长与直径有关系
1、我们知道自行车是一种常用的交通工具,课前老师让大家了解了它的一些规格,谁来说?
2、估计学生不知道,师边出示22英寸、24英寸、26英寸的轮胎图片,边介绍。这里的22英寸、24英寸、26英寸是指轮胎的直径。
3、如果把它们各滚动一圈,哪种车轮行的路程比较长?
在这个过程中认识什么是
以上为正比例函数教学过程 篇6范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇7
1. 了解人们使用一次性生活用品对环境造成的不良影响。
2. 知道塑料制品因为“极难降解”和“燃烧时释放毒烟”等原因会造成环境污染。
3. 知道正确使用和处理一次性生活用品的方法,意识到人类正确使用物质的重要性。
4. 意识到物质的使用对人类的生活即存在有利的一面,又存在有害的一面。
教学准备
1. 纸杯、方便筷、保鲜袋、餐巾纸、易拉罐、商场或超市的塑料袋等。
2. 反映一次性用品用过之后去处的图片:废品回收站、垃圾堆、铁路附近等。
教学过程
第一课时
一、导入
1. 放在同学们桌上的这些物品都认识吗?它们有什么用
2. 它们有一个共同的名字叫一次性的生活用品。(板书课题:一次性的生活用品)也就是说它们原本的功能只能被使用一次。
二、讨论
1. 你们还知道哪些一次性的生活用品?
2. 这些一次性的生活用品分别使用什么材料制作的?小组讨论,并把你们的讨论结果写在62页的表格中。
3. 小组汇报
4. 将学生汇报的情况记录在以下表格中
材料一次性生活用品名称
木材方便筷. 牙签. 纸杯……
……
5. 讨论:
(1)这些一次性的生活用品中,哪些是你经常使用的?用过之后,你一般怎么处理它们?(2)被丢弃的一次性生活用品最后到哪里去了?
(3)这些用不同材料制成的\'一次性生活品除了丢弃之外,还可以怎么处理?
三、塑料制品的处理方式
1.刚才同学们谈到了用塑料制成的一次性生活用品的处理。正好书上63页也提到了这类一次性生活用品的处理。一起来看看,书上说的和你们说的有哪些相同和不同的。
2. 看过以后你有什么感想?
3.当前塑料制品的回收率很低,大多数塑料制品被随意丢弃和填埋在地下。虽然塑料制成的一次性生活用品大多数是无毒的,但是由于塑料制品的一些特殊性质。它们还是对环境造成了很大的污、
4. 布置实验任务。分组实验:将一个塑料袋.
一根牙签和一张餐巾纸埋在同一个花盆中,定期给花盆中的泥土浇水,保持盆内泥土的湿润。每隔1周挖开泥土观察并记录(64页表格)一次它们的变化,持续观察1个月
5. 各小组制定考察计划。明确分工,明确实验方法. 实验地点等
第二课时
一、交流
1. 各小组在实验之后有什么发现?
2. 介绍:塑料制品在自然条件下大约需要200~400年才可以像木制牙签和餐巾纸一样被分解掉。当它们被埋在地下,会妨碍植物的生长;当它们飘散在四周,会丑化环境,如果被动物误食会使动物死亡;当它们被随意焚烧,会释放有毒气体污染空气。由于废旧塑料制品多数是白色的,所以它们又被称为“白色污染”。
二、正确使用塑料制品
1. 我们的生活中可以不用塑料制品吗
2. 在塑料制品的使用上我们要注意些什么?
3. 怎样正确处理被使用过的塑料制品?
三、正确使用一次性生活用品
1. 我们需要付出很长时间的努力才能改变目前塑料制品对环境的危害。那么,像方便筷.
牙签这样使用后不会对环境造成很大污染的一次性木制品,是不是就可以随意使用呢?(1m3木材可生产13000双方便筷,目前我国一年消耗约260亿双木筷,大约需要200万m3木材)无节制的使用这些一次性的木制生活用品会造成什么后果?
2. 讨论:一次性的生活用品我们该不该用?应该怎么用?
以上为正比例函数教学过程 篇7范文内容,仅供参考借鉴,请按实际需要修改。
正比例函数教学过程 篇8
引导语:有关《鸟的天堂》的教学课件要怎么设计?如何设计一份《鸟的天堂》的教学课件?接下来是小编为你带来收集整理的文章,欢迎阅读!
教学目标:
1.理解课文内容,了解大榕树的奇特和美丽,众鸟纷飞的景象。
2.学习作者动静结合的描写方法。
3.有感清地朗读课文,背诵喜欢的段落。
教学过程:
一、整体感知
1.导入:请同学们先听一段乐曲,听后说一说你有什么感受?(播放《百鸟朝凤》录音带。鸟很多,鸟的天堂——板书。)
2.这节课,我们就和巴金爷爷一起去广东新会县天马河上一个被人们称作“鸟的天堂”的地方去看一看,巴金爷爷两次去鸟的天堂,看到的景象截然不同,第一次看到的是(学生接:大榕树),第二次看到的是(学生接:鸟)
3.请同学们选择自己喜欢的读书方式快速阅读课文,体会一下榕树给你什么感受?鸟儿又给你什么感受?
(榕树——大、茂盛;鸟——多、欢快)
二、重点感悟。体会榕树的奇特美和群鸟纷飞时的壮观景象。
(一)请同学们选择你喜欢的部分,抓住重点词句深入体会,体会后放出声音有感情地朗读出来。用朗读的\'形式加以汇报。
(二)汇报交流。
大榕树:
1.大
学生甲:有机会看清它的真面目,真是一株树,枝干的数目不可计数。
(1)汇报读,其他同学听读:哪儿读得好?为什么?你听出了什么?从哪儿听出来的?(从不可计数体会出枝干数目很多,说明树很大。)
(2)重点体会“真”字。
两个“真”有什么不同呢?听老师读,体会一下。
出示投影:
学生体会出:第一个“真”意思是本来的,实际的。第二个“真”指的是确确实实。应读出惊叹的语气。
学生乙:枝上又生根,有许多根直垂到地上,伸进泥土里。
(3)重点体会“又”字。指树根很多。
出示图片:谁来指一指哪些是气根?(体会根上生枝,枝上又生根,独木成林的景观。)
学生丙:一部分树枝垂到水面,从远处看,就像一棵大树卧在水面上。
(4)体会“卧”字。(树占地面积大。)
(5)这株大榕树占地面积有多大呢?谁查找到了这方面的资料?(学生答:一万多平方米。)
(6)课下大家丈量了操场和教室的面积,大家计算一下:合几个操场?几个教室?(结合具体情况请学生作答。)
(7)经过换算,你有什么感受?(简直太大了。)
2.茂盛。指名读句,谈体会。
学生甲:那么多的绿叶,一簇堆在另一簇的上面,不留一点缝隙。(不留一点缝隙,说明树叶多。)
(1)重点体会“推”。请同学们演示,说明叶多而密。
学生乙:地翠绿的颜色,明亮地照耀着我们的眼睛,似乎每一片树叶上都有一个新的生命在颤动。
(2)重点体会“颤动”。
(3)同学演示,体现微微地动态。
(从中我们体会到榕树的生命力非常茂盛。)
学生丙:从对大榕树特点的描述中,我们看出作者不禁在内心深处发出感叹:这美丽的南国的树。
3.看录像:榕树的大与茂盛。
4.请学生反复朗读这部分内容,突出重点词句,体会榕树的特点,在读中表达出自己对课文内容的理解与感受。
5.请学生画板画,体现榕树大而茂盛的特点。
鸟
1.播放课件录相:“群鸟纷飞”的场面。使学生形象地感受这部分的动态美的描写。
2.导语,让我们走进课文,欣赏热闹的场面。请你选择自己喜欢的方式读读课文,尽情地感受这部分所描绘的美。
3.再次默读课文,思考:从哪些重点语句中能够体会出这里的鸟儿多?
4.学生汇报。
学生甲:我们继续拍掌,树上就变得热闹了,到处是鸟声,到处是鸟影。
两个“到处”说明鸟很多。
学生乙:我注意地看着,眼睛应接不暇,看清楚了这只,又错过了那只,看见了那只,另一只又飞起来。
我们体会了“应接不暇”。应接不暇的意思就是说人或事情很多,接待,应付不起来。在课文里是说鸟太多了,眼睛看不过来了。
学生丙:大的、小的、花的、黑的有的站在树枝上叫,有的飞起来,有的在扑翅膀。
有的……有的……有的,说明鸟的姿态很多,种类也很多。
学生丁:一只画眉鸟飞了出来……站在一根小枝上兴奋地叫着,那歌声真好听。
我们从中体会到鸟儿很欢快,快乐地叫着。
5.教师借机指导,激发学生的想象力。
那么,请大家想象一下,树上还有什么姿态的鸟呢?(学生发散想象。)
6.看到这么一棵奇特的榕树,领略到树上鸟儿欢腾的场面,作者又发出了怎样的感叹呢?
学生齐读(投影出示)
昨天是我的眼睛骗了我,“鸟的天堂”的确是鸟的天堂啊!
7.教师追问:
(1)从这句话中,你发现了什么?
(第一个鸟的天堂有引号,而第二个则没有。)
(2)作者为什么要这样写呢?有什么不同的含义吗?
(第一个鸟的天堂指的是这棵大榕树,第二个鸟的天堂指的是真真正正鸟的天堂。鸟儿在这里栖息繁衍,过着幸福的生活。)
8.配上欢快的音乐,把美术课上画的小鸟,“放飞”到大榕树上。
9.再读课文这一部分,体会热闹欢快的场面。
三、了解榕树成为鸟的天堂的原因。
1.什么原因使这棵大榕树成为了“鸟的天堂”呢?
2.学生根据查找的课外资料或其它知识加以介绍分析。
3.小结:榕树的枝繁叶茂为鸟类提供了生存空间、食物、水分,当地的居民爱鸟、护鸟,同时鸟的粪便成为榕树生长的有机养料。使这棵榕树长得愈加的繁茂。
四、思维拓展,深化主题。
1.播放“鸟的天堂”的完整课件。
2.出示思考题:
请你以导游或小鸟儿的身份,向游人介绍这里的景象。介绍的形式可以自由选择。如写导游词、写诗,顺溜……。
3.学生分头准备。
4.学生选择自己最喜欢的方式来表达自己学习的感受。汇报交流。
五、总结全文。
大榕树被大自然赋予了旺盛的生命力,成为了鸟的天堂。作为人类也要保护动物。保护环境,保护大自然。
以上为正比例函数教学过程 篇8范文内容,仅供参考借鉴,请按实际需要修改。
以上为佳文《正比例函数教学过程》全文内容,如《正比例函数教学过程》对您有帮助,或者您对于《正比例函数教学过程》有建议,欢迎反馈给我们,以帮助到写《正比例函数教学过程》方面文案需求的朋友们。